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2 ABSTRACT (continued)

submerged in light (air) and heavy (water) acoustic medium. These R
were verified experimentally by testing two duralumin shells, ('
a = B inches in radius and wall thicknesses h = 0.0514 and 0.1069 inch. »
The measured resonance frequencies were within 5% of those predicted in
alr and in water for identified mode numbers up to 34. The measured
mean-line driving point admittance also agreed well with the predicted
ones to within 3 dB.

Also in this study,,ﬁaé exact wave harmonic series and the approximate
Geometrical Theory of Diffraction (GTD) were used to predict the acoustic
near field of an elastic spherical shell insonified by an acoustic point
source. The predicted normalized, acoustic nearfield pressure computed
by the exact solution agreed very well with the measured ones for
frequencies up to ka = 30 . The nearfield acoustic pressure was also
computed by the GTD method with a locally reacting impedance assumed

_for the spherical surface. The decayed diffracted rays were then
computed and summed to give the total diffracted pressure spectra in
the shadow zone. Various surface impedances were assumed and the
resulting nearfield pressure was compared to the exact solution. The
GTD solutions were generally 60 dB or more lower than the exact ones,
even when one assumes the fairly hard characteristic impedance of
duralumin to represent the impedance of the shell. The source of the
discrepancy was traced to the structure-borne resonant vibration which
is not accounted for in the GTD. This means that the predicted acoustic
near field of general elastic structures as computed by the GTD method
will not agree with the exact solution for such structures.
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ABSTRACT

In this study, the acoustic near field of excited spherical
shells is investigated. The interaction of the acoustic medium with

the vibration response of an elastic spherical shell due to an

excitation by a point force or an acoustic point source is investigated

analytically and experimentally. Thus, only axisymmetric, nontorsional

motion of the spherical shell is considered, with a thin shell theory
that includes extensional and bending deformation.

The elastic spherical shell resonances were computed when in
vacuo and when submerged in light (air) and heavy (water) acoustic
medium. These were verified experimentally by testing two duralumin
shells, a = 8 inches in radius and wall thicknesses h = 0.0514 and
0.1069 inch. The measured resonance frequencies were within 5% of
those predicted in air and in water for identified mode numbers up to
34. The measured mean-line driving point admittance also agreed well
with the predicted ones to within 3 dB.

Also in this study, the exact wave harmonic series and the
approximate Geometrical Theory of Diffraction (GTD) were used to
predict the acoustic near field of an elastic spherical sheli‘
insonified by an acoustic point source. The predicted normalized,
acoustic nearfield pressure computed by the exact solution agreed
very wéll with the measured ones for frequencies up to ka = 30 .

The nearfield acoustic pressure was also computed by the GTD method
with a locally reacting impedance assumed for the spherical surface.

The decayed diffracted rays were then computed and summed to give the
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total diffracted pressure spectra in the shadow zone. Various surface
impedances were assumed and the resulting nearfield pressure was
compared to the exact solution. The GTD solutions were generally

60 dB or more lower than the exact ones, even when one assumes the
fairly hard characteristic impedance of duralumin to represent the
impedance of the shell. The source of the discrepancy was traced to
the structure-borne resonant vibration which is not accounted for in
the GID. This means that the predicted acoustic near field of general
elastic structures as computed by the GTD method will not agree with

the exact solution for such structures.
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roots of the Airy function

spherical coordinates

distance from the observer to the center of the
spherical shell

distance from the source to the center of the
spherical shell

acoustic resistance

mechanical resistance or structural resistance
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M
an

mn

Pn(cose)

Q

time

tangential displacement

radial displacement

time derivative of u and w , respectively
Airy function

derivative of A(x) with respect to x
Lamé parameter

bar velocity

plate velocity

Young's modulus

= dn/df), responance density
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Xvi

cylindrical Hankel function of the first and second

kind and order n , respectively

the changes in curvature due to bending of the
deformed middle surface of a shell about the

6 and ¢ coordinates, respectively

parameter of torsional deformation

modal acoustic loss factor

modal structural loss factor

differential operators

mass of the shell

fluid virtual mass

mechanical reactance

modal mass of the shell

Man/usn, mass loading factor

qu + Esn, total mass of the submerged shell
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Legendre polynomial of degree n

potential function
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xvii

R =r +r resistance of the submerged shell

f a1 mn

RS principal radius of curvature of the shell

RB’ R¢ principal radii of the curvature of the shell about

8 and ¢ , respectively

Sn : mode shape factor of the shell

T kinetic energy of the shell é
v total strain energy of the shell ;
Vb = awllz, bending velocity
Yd driving point admittance (DPA) i
Yc mean value of the DPA !
Zan =Ty, " inan , acoustic impedance

Z =r + iM , mechanical impedance |
mn mn mn 4
Za = Zmn/pc , normalized mechanical impedance ?1
Z =7 +1Z , total impedance of the submerged shell F

n an mn 3
a = (en?/120_(1 - vH1M4 '_

3

o decay factor for acoustic propagation

(h/a)2/12 , bending factor

cosH &

X wavelength !

™
1

3
Ui

>
]

n(n + 1) Y

=|
]

psh , surface density of the shell

un = sn + 1/2 , numerical variable
Y Poisson ratio
Qo P mass density of the fluid
ft Py mass density of the shell
oe, D¢, pn corresponding strains of Oe, 0¢, On
00¢’ Den’ p¢n corresponding shear strains of OO¢’ nOn' 0¢n
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xviii

normal stresses on three mutually perpendicular faces
of an element of a shell

shear stresses

eiﬂ/3/61/2
n

angular frequency
= Cb/a , ring frequency

= w/wr , normalized frequency
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CHAPTER I

BACKGROUND

1.1 Introduction

The study of the vibration of a spherical shell submerged in an
infinite acoustic fluid medium is the main objective of this thesis.
The mechanical and acoustical energies are coupled by a fluid reaction
[1]. The vibration of a spherical shell has been studied by many
authors [2-8]. 1In a paper 'On the Vibrations of a Spherical Shell,"
Lamb [2] has investigated a membrane spherical shell for axisymmetric
vibration, and pointed out the existence of two infinite sets of normal
modes. Baker [3] has expanded the work given by Lamb, and demonstrated
experimentally the existence of normal modes predicted by the theory.
Kalnins [4] studied the bending effects on the vibration of a spherical
shell in vacuum, and labeled the lower branch as bending modes.
Wilkinson [5] showed that there are three branches in the frequency
spectrum when the equations of motion of closed spherical shells
include the effects of transverse shear deformation and rotatory
inertia.

Considering the vibration of a spherical shell submerged in
fluid medium, Junger [1l] examined the sound scattering of a membrane
elastic spherical shell, insonified by a plane acoustic wave. He
concluded that the scattering field of all elastic scatterers is the
result of the rigid body scattering and radiation scattering. 1In
another paper [6], he studied the same dynamic configuration but

excited by a point force. He demonstrated the radiation loading on




an elastic shell. Hayek [7] studied the vibration of the forced,

axisymmetric spherical shell in the light of the bending theory in an
acoustic medium. He concluded that the resonance frequency is sensi-
tive to the parameter (h/a) , especially for large mode numbers n ,
and the resonance frequency increases as n increases, no matter how
small is the ratio (h/a) . Lauchle [8] extended the work of Junger,
and demonstrated the interaction of a spherical acoustic wave with an

elastic spherical shell in fluid media.

1.2 Statement of the Problem to be Studied and the Mathematical

Model
In the present paper, the effects of fluid loading on elastic

spherical shells are investigated experimentally and analytically.
Mathematically, the shell is modeled using thin shell theory [9, 10],

a theory considered valid for a large number of practical applications.
Within the range of the thin shell theory, (h/a) < 1/20 [9], two
different thickness (h = 0.0514" and h = 0.1069") duralumin elastic
spherical shells of radii a = 8" have been used for the experiments.
In the thin shell theory, there are three approximations of different
orders: (1) membrane theory [2]--this theory neglects all moments
since the wall thickness of the shell is very small; (2) classical
theory [7]--this theory includes the bending factor (h/a)2/12; and

(3) improved theory [5]--this theory includes the effects of transverse
shear deformation and rotatory inertia. Investigation of the resonance
frequencies of the shells showed that the classical thin shell theory

is adequate. Due to the type of excitation of the shells, the basic

o
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equations are limited to the axisymmetric nontorsional vibration of a
spherical shell.

First, the equations of motion for the shells in this study are
derived by applying Hamilton's variational principle. To investigate
the effect of bending, the resonance frequencies are computed. The
equation derived for the natural frequencies of a submerged shell is
transcendental. The standard linear method was not useful for solving
such an equation. Therefore, a new method was developed for the
computation of the resonance frequencies. The new derivation also
gives a deeper insight into physical interpretations of the results.
This method, derived for the equations of motion of submerged cylind-
rical shells in terms of generalized coordinates, has been developed
by Hayek [11] to compute the resonance frequencies of submerged
shells. By applying this method to spherical shells, the resonance
frequencies of a submerged spherical shell were obtained.

The second problem considered is the acoustic radiation from
a point-force excited spherical shell. For a force-excited shell,
consider a unit concentrated, harmonic force exciting the shell at
6 = 0 . The shell is freely suspended in a fluid medium. The
driving point admittance was computed for such a loading and measured
experimentally. Furthermore, the expressions for the resonance
density of the shell was derived for high and low frequencies. These
were used in the characteristic admittance theory of Skudrzyk [12] to
predict the meanline of the driving point admittance of a point-force

excited spherical shell in vacuo.
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The next problem considered is the acoustic point-source excited
shell. The mathematical model for the shell motion is the same as that
given above, but the shell is insonified by an acoustic spherical wave.
The effect of the fluid loading on the shell is investigated for the
near field analytically and experimentally. Furthermore, the radiated
pressure due to the vibration of the shell responding to the pressure
of the incident spherical wave will be examined analytically by use of
wave harmonic functions. The internal damping is also considered in
this problem.

Finally, the diffracted pressure field due to a point source in
the vicinity of a spherical shell was re-evaluated by use of the
Geometrical Theory of Diffraction (GTD) due to Keller [13-15]. This
approach was taken because the wave harmonic function expansion would
not be possible for shells that are not regularly shaped. The approach
requires the knowledge of the impedance of the surface around which
acoustic rays propagate. Comparison of the exact wave harmonic
solution with the GTD method was made.

The model of the problems being studied consists of a spherical
elastic thin shell excited by an acoustic spherical wave or a unit
concentrated harmonic force. The shell is submerged in an infinite
compressible acoustic medium having a mass density p , and the sound
speed ¢ . As shown in Figure 1.1, the shell has a radius a , and
the thickness of its wall is h . The mass density of the shell is
pS , while Young's modulus and Poisson's ratio are E and V ,
respectively. The shell is located at the origin of the spherical

coordinate system. The source is located on the z-axis at the point

O




S(ro,0,0)

R(r,0,¢)

Figure 1.1 Configuration of the spherical shell
in the spherical coordinate system




S(ro,0,0) , a distance T from the center of the shell. The observer
point is R(r,8,9) , where r 1is the observer distance from the center
of the shell, and € 1is the aspect angle. This arrangement will reduce
the problem to the study of an axisymmetric vibration of a spherical

shell as well as the pressure field.




CHAPTER II

FORMULATION OF THE THIN SPHERICAL
SHELL'S EQUATION OF MOTION

2.1 Introduction

In this chapter, the equations of motion of a submerged
spherical shell are derived by applying Hamilton's variational
principle [16, 17]. For a better understanding of the dynamic inter-
action between a submerged spherical shell and the surrounding J
acoustic medium, the equations of motion are also derived in terms of
generalized coordinates {11]. CGCenerally, the analytic formulation is
verformed for idealized conditions. For thin elastic spherical shells
submerged in a fluid medium, it is assumed that [9, 101}:

1. The material of the shell is linearly elastic,
isotropic, and homogeneous--this means that the i
material of the shell obeys Hooke's law.

2. The ratio of the thickness to the radius is
(h/a) < 1/20 , so that the thin shell approximate
theory can be used.

3. The displacement of the shell is small when compared
to the thickness h .

4. The shell is freely suspended; straight fibers of
the shell which are normal to its middle surface
before deformation remain straight and normal to
the deformed middle surface and do not suffer any

extensions as suggested by Kirchhoff; and the normal




stresses acting on planes parallel to the shell
middle surface are neglected as compared to the
other stresses as introduced by Kirchhoff.

5. The acoustic pressure (disturbed pressure) has a
linear relation with the condensation of the fluid.

6. The fluid is compressible and inviscid.

2.2 The Equations of Motion

In the present section, the dynamical response of an elastic
body is considered where the applied forces, the displacements, etc.,
are time-dependent. To derive the equations of motion, Hamilton's
variational principle is applied. The variational integral requires
expressions for the kinetic energy T and the strain energy V of

the system as well as the external forces as derived from a potential

function Q . Hamilton's principle states that:
t2 B
§ J (T-V+Qdt = 0 , (2.1)
1

where tl and t, are the initial and final time states, respective-
ly, of the system. The symbol & represents diiferential variation.
There are many different approaches to obtain an expression for
the strain energy of a thin shell. 1In this study, the expression for
the strain energy density of thin shells as developed in References (9]

and [10] will be used. Generally, the expression for the strain energy

for shells is defined by:




4 ey

v = 1
vV = 2 I (°e°e + 0¢p¢ + %°n + 06¢06¢ + %9non + cd)np(bn)dv ’
v

(2.2)

where 06, c¢, On are the normal stresses on three mutually perpen-
dicular faces of an element of the shell, pe, p¢, pn are the
corresponding strains, 06¢’ oen, o¢n are the shear stresses on these
faces, p6¢, pen, p¢n are the corresponding shear strains, and dv is
the volume of the element. The stresses on the middle surface are
shown in Figure 2.1.

By applying the assumptions of Kirchhoff in Section 2.1, the
stress O and the strains p, , P can be neglected as compared

n On ¢on

with the other stresses and strains, respectively. Therefore, Equation

(2.2) may reduce to:

vV = %-J (04pg + OoPp * ce¢pe¢)dv . (2.3)
v
Expressing all stresses in terms of strains, expanding the
strain in a Taylor's series of (h/RS) , and neglecting terms of the
order (h/RS)3 and higher, where RS is the principal radius of

curvature of the shell, one obtains an approximate expansion for the

strain energy density:

2
o]
vV = —Eb 2 _ P
vV = 201 - vz) [g[(pg + O¢) 21 v)(Oep¢ —7?—)]A6A¢ded¢
3 2
Eh I . ) ,
Bk, +K)2 - 20 - WREK, - —2) A A dede,
24(1 - v?) Sl 6 ¢ oy = 5 ) 1Aghy
(2.4)

where E 1is the Young's modulus, V' is the Poisson ratio, Ae and

A¢ are the Lame parameters, Ke' and K® are the changes in curvature




Figure 2.1

Direction of the stresses OS acting
on the middle surface of the shells.
[ I DO s p¢ are the orthogonal

n
unit vectors.

10

(R

)

Todenr adviza b




11

due to bending of the deformed middle surface of a shell about the 6
and ¢ coordinates, respectively, and K6¢ is the parameter for
torsional deformation. The integral in Equation (2.4) is the surface
integral over the middle surface. It should be noted that the
extensional and shear energy is represented by the first integral,
and the second integral represents the bending and torsional energy.
For axisymmetric extensional and bending motion of the shell,
Equation (2.4) can be further simplified because the shear and
torsional factors vanish for axisymmétric motion. The variables in

Equation (2.4) are, therefore, expressed as:

p = _l_él._i
3] Ae 3 Re
0. = _1_3_59_‘1_1
¢ AGA a8 R¢
pe¢ = O s
K 1 3 (l 8w+u)+ 1 aAe (1 3w~]
= =2 (2 ¥ 9 = (+ =] ,
N Ae 26 Ae 6 0 A9A¢ 3¢ A¢ ¢
K. = J_ﬁ(_Lﬂ+L)
¢ ASA 36 A6 30 R6
and
K6¢ = 0 . (2.5)

where u = u(8,t) and w = w(b6,t) are the tangential and radial
displacements, respectively, and Re and R¢ are the radii of the
curvature of the shell about 6 and ¢ coordinates, respectively.

Consider the geometry of a spherical shell, then, A0 = a,

A = a sin0 , and RO = R, = a . The geometric configuration is shown

¢ b

in Figure 2.2. Substituting the above relations into Equation (2.5),




=
12
z ~
|
Figure 2.2 Orientation of the vectors of
a spherical shell
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one obtains expressions for a spherical shell:

o R R T e T T T
q\

= lfou _
P = gl -l
pq) = ‘;[UCOtG - w] s
Pop - 0 R
2
1 Ow du
R, = L Py dy
8 aZ 862 a6
1
K¢ = = [u + 36] cot8
a
1 and )
K6¢ = 0 . (2.6)

The total kinetic energy of the shell is:

1 2 .2
T = 2 ps J (1" + w)dv
v
T
- mo, ha’ J @ + %% sinddd , (2.7
(o]

where G and w are the time derivatives of u and w , respectively.
The external forces of the considered problem are the normal component
of applied surface forces, pi (acoustical or mechanical forces), and

the reactive normal surface force, P> due to the fluid loading.

Therefore, the potential function due to these two force systems are:

O
[

- L (pr + Pi)wds

"
- om a2 J (p_ + p.)w sinddod . (2.8)
o r 1

Substituting the strain and kinetic energies and the potential function
into Equation (2.1), one obtains the coupled equations of motion of a

spherical shell in terms of displacements u and w @

Tesiwr




2 o 5u 2
1+ B)[(v + cot Bu ~ cote-gé - SEEJ + (Rcot“ @+ 1 + v+ yR)
2 3 2 2
'&Meé%-63%+1;vpazi%= 0 (2.9)
38 36 S ot
and
»u 52u 2 . s
B = + 2Bcotd < - [(1 + v)(1 + B) + Beot” 8] =
263 39 26

(1 + B)(1 + vycotd]u

+ [Bcot30 + 3Bcoto

4 3 2
v (1 +v+ cot28) 2w

30 362

+

>

+

[N
0
o

E|'D
|

+ (2cotb + cot36 - vcotd) %%]+ 2(1 + v)w

1 -2 = 9w L L- v2
E s at2 Eh

2 -
a (pr+pi) = 0 |, (2.10)

where R = (h/a)2/12 is the bending factor.
By changing the variable 8 in the foregoing equations to a
new variable n = cos® , and using a time harmonic variation for all

variables:

. _
u o= ume M, W o= wme X,

and

t

t P_(nye ™ , (2.11)

-iw
pi = Pi(n)e ’

Equations (2.9) and (2.10) can be rewritten in the following form:

_ 242
LU+ LN = (=) (2.12)

P o

™
a6




and
L U+L W = (1- VZ)QZW - l—:—yi‘az(P + P) (2.13)
wu ww Eh i r ’ :
where the operators Luu’ Luw’ qu, wa are given by:
2.1/2 4° 2.1/2
L = - (1+B8[Aa-n) ——3-(1 -n’) +@Q-v ,
uu
dn
(2.14)
2,1/2 d da 4 g2
L, = @-1n9 [B(L - V) an (1 +Vv) gn+ B V7] i
(2.15)
- _ _ d _.2\1/2 2d ._.2,1/2
L= -{B -V - A+W] g @ -nH77+ 8V - )14}
(2.16)
and
4 2
wa = BV 4+ B - VIV + 2(1 + V) , (2.17)
where
2 _ 4 _ a2y d
2
Qz = pswzaZ/E = ELi- is the normalized frequency,
Wy
b
w = — 1is the ring frequency
T a
and
¢, =/% (2.18)
b e
s
In Appendix A, a detailed derivation of the equations in this section

is given.
For this problem, the tangential and radial displacements can
be expressed in terms of Legendre polynomial of degree n as follows:

® dP_(n) ®
v = 1 v a-dYr—— Jum = ] wrm o,
n=

(o] =0

! (2.19)
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and
o o0
p,o= ] P P(M , P =] p_PMmM . (2.20)
n=o n=o

Then, on substitution of these two equations into Equations (2.12) and

(2.13), one obtains two algebraic equations in terms of Un and wn :
2,2
{@-vHe - 1+ B)[Xn - (- V)]}Un
+1{8[A - Q-1+ AQ+nw =0 (2.21)

and

2 2
[AnB(l -Vv) - (1 +v) - an ]Un + [an - B(1 - v)xn

2
2.,2 _ 1 -v 2
+2(1+vVv) - (1L -v)Q ]wn = T (Pin + Prn) ’
(2.22)
vhere An =n(n + 1) .
2.3 The Natural Frequency, the Mechanical Impedance, and the Ratio

U /W of the Shell in Vacuo

o

Before proceeding to present the solution to shell vibration
excited by an acoustic point source, one should examine the free
vibration of a spherical shell. For a freely vibrating shell, there
exists no applied force, and the shell in vacuo is not subject to any
reactive forces due to the fluid loading effect. It is evident that
the foregoing Equations (2.21) and (2.22) become two homogeneous
equations with two unknowns Un and Wn . The determinant of the
equations must vanish, which results in the frequency equation as

follows:
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- vH%% - 18 2+ L+ BOA+ (L +30) - B(L - WA - vDR?

3

+er 3 - 43An2 +[BG5 - v3) + (1 - vz)nn - 201 +B)(1 - vY) = o.

(2.23)

This is a quadratic equation in Qz with only two distinct positive
roots for each mode number n . The larger root of each mode belongs
to the upper branch, and denoted by Qh . The smaller root, 92,
belongs to the lower branch. The roots th and an are the

natural frequencies of the spherical shell. For n = 0 , there is

only one positive real root:

This frequency represents purely radial motion, which is referred to
as the "breathing mode." This mode's elastic energy is due to the
extensional deformation only because the shell vibrates only in the
radial direction, and the radius of curvature of the shell is con-
stant. The natural frequencies of duralumin shells of radius a = 8
inches and thickness h = 0.1069 inch and h = 0.0514 inch were
computed and tabulated in Tables 2.1, 2.2, and 2.3, respectively, and
also plotted in Figure 2.3. It is clear that the natural frequencies
of the lower branch for membrane theory, B = 0, are independent of the
shell's thickness, while the natural frequencies of bending modes,
for B > 0, vary with the thickness. However, the upper branch
frequencies do not change significantly with B . For a thin shell,
where the ratio h/a is very small such as the ratio 0.0064 shown in

Figure 2.3, the membrane theory may be applicable at low frequencies
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or for small values of the mode number. It is interesting to note
that ( approaches unity when the mode number goes to infinity for
B =0 . Different asymptotic approximations to the roots of

Equation (2.23) can be obtained as follows:

2 N Xn -2
Yo Y FTE o 8 (2.25a)
2, 8
Q, ~ —B_- 41 s Q>1 (2.25b)
&n 2
1-v
and
2 An+1+3\)
Ym " 5 , n>0 . (2.25¢)
1-wv

For a thick shell (h = 0.1069") or thin shell (h = 0.0514™),
Equation (2.25b) and (2.25c) predicts the natural frequencies with
10% accuracy for n > 6 for the lower branch and n > 3 for the
upper branch. These approximations are better than those given by
Feit and Junger [18] which eliminates the unity in Equation (2.25b).
The unity in the formula for the lower branch represents the membrane
energy and the first term represents the bending energy. Thus,
neglecting this factor, the 107% accuracy can only be obtained for

n > 20 for the lower branch. If n is large enough, the unity can
be neglected and the shell resonances approach those of a plate of
equivalent surface, i.e., the shell resonances fall in the so-called

"plate range," where the curvature effects are no longer important.

When £ < 1 , the lower branch roots given by Equation (2.25a) are
within 57 for n < 10 . These frequencies are shown in Figure 2.3.

The modal mechanical impedance of a spherical shell is inde-

pendent of the type of excitation. It just indicates how the shell




itself responds to a modal force. In order to determine the modal
mechanical impedance of a shell, the problem of the forced vibration
of a shell in vacuo shall be considered. Since the structure is in
vacuo, there is no fluid pressure acting on the shell. The modal
fluid pressure prn in Equation (2.22) should be set to zero. Then,
solving the equations of motion in Equations (2.21) and (2.22), one

obtains the modal mechanical impedance of the spherical shell:

L T > S (2.26)
. - s .
mn Wn iwwn (1 - vz)wa Dn
where
2.2
Noo= @-vHRt - 82+ @A+ 1+ v -B-V]A-VOR
#822 — el + 865 - VD + - VD - 2a+ -V,
and
2.2
b = -(l+6)}\n+(1—\))(1+8)+(1—\))Q
When =0, Z reduces to the modal mechanical impedance

mn

of a membrane shell [8]. The modal ratio of the tangential to radial

displacement amplitude Un/wn is obtained from Equation (2.21) as

follows:
U B(A_ - 1 -]+ QA+ V)
n n
wo- R . (2.27)
n @A+BD - A-w]-a-ve
The modal ratio depends on the excitation frequency © . The modal

ratio for two duralumin spherical shells at the natural frequencies
is shown in Tables 2.1, 2.2, and 2.3. It decreases with increasing n

(and natural frequency) for the lower branch, while it is fairly

constant for the upper branch.
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2.4 The Derivation of the Equations of Motion of a Spherical

Shell in Terms of Generalized Coordinates

Although the equations of motion of a spherical shell have been
derived, the derivation of the dynamic equation in terms of general-
ized coordinates is also necessary. Equations (2.21) and (2.22) in
terms of the tangential and the radial displacements cannot, in some
ways, provide a clear-cut mathematical model from which one can
immediately identify physical properties. However, when the dynamic
equations are expressed in the form of a differential equation in
terms of generalized coordinates, the model is mathematically
identical to that of a single oscillator system.

A derivation of the shell's dynamic equations is accomplished
by applying Hamilton's principle as presented in Section 2.2. The
displacements u and w are expressed in terms of generalized

coordinates as follows:

[
"

1T (8)q_(t) (2.28)

and

€
]

I W (@)q (t) , (2.29)

where ﬁ; and W are the mode shapes of the tangential and the

n
radial component of the displacement as defined in Section 2.2, and
qn(t) are the generalized coordinates.

Following the preceding derivation, the variation of the

kinetic energy and the potential function of external forces are:

—~ iv2 =2, .
= U bd
8T u ( n + Wn)qn(Sqn (2.30)
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and

§Q = - (PuUn + wan)(sqn . (2.31)

where U = psh is the surface density of the shell, Pu and Pw

are the external forces on the surface of the shell in tangential and

radial directions, respectively, and ﬁn represents the acceleration.
For the free vibration of the shell, &Q = 0, and

qn(t) = exp(~iwt), where ®w 1s the natural frequency root of

Equation (2.23), then, from Hamilton's variational principle, one

obtains the strain energy:

J&vds

[ &1ds

-2 =2 =2
- B qnéqn £(Un + Wn)ds , (2.32)

th mode.

where wn is the natural frequency of the n
For the forced vibration, one has the equation of motion

expressed in terms of generalized coordinates:

F_(t)
. 2 _ _n
qn*'wn 9, = M ’ (2.33)

where the generalized force is:
Fn(t) = jS(PuUn + wan)ds , (2.34)

and the generalized mass (modal mass) is:

n

M= EJ (ﬁrzl +W§)ds i (2.35)
s

@




For a spherical shell:

2T
.= =2 =2, 2
Mn = U I I (Un + Wn)a sinf6 d06d¢
o o
2 -+1 Ui 2 dPn(n) 2 2
= 2ma” u — 1 -n")|—— +P_(M)| dn, (2.36)
2 dn n
W
-1 'n
where
U dp
= 0 /i_npZ_n
n
and

W o= B (). (2.37)

Using the following integrals:

+
1(1 R FaM 2 L me D
dn 2n + 1
~1
and
+1
2 _ 2
J Pn(n)dn = nil s
-1
one has:
2— U2
_ 4maTu ﬁlf _ M
My = 2+l [An[wnj R B e ’ (2.38)

where Sn = Xn(Un/W“)2 + 1 1is the mode shape factor of the shell, M
is the total mass of the shell.

Three kinds of forces will be considered, namely, the excitation
force, the reactive acoustic pressure, and the internal structural
damping force of the system. The generalized applied force, acting

normally on the surface, is given by:
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Fln = JS PW]. Wn ds

2 1_
2Ta r wn Pin dn , (2.39)
-1

and the acoustic pressure on the surface of an axisymmetric shell is:
p = -2 W = -2 W 3J R (2.40)

where the acoustic impedance is:

h(l)(ka)

an - ipc h(l)' = r - iwM , (2.41)
n

n n
(ka) a a
where T and Man represent the modal acoustic resistance and
reactance (virtual mass), respectively. Substituting Equation (2.40)

into Equation (2.34), one has the generalized acoustic pressure:

. —2
F,o o= -2, 4 JS Vo ds . (2.42)

By applying Equation (2.37), an becomes:

4Ta

FZn T T 7n+1 [ran 94, + Man qn] ‘ (2.43)

In order to derive the structural damping force, consider the
damping force to be proportional to the velocity, and the generalized

force thus becomes:
21 41 ﬁi ] —2 2
= - K§ — wWooa dnd
Fa Kq J J [ -+ 1) n e, (2.44)
1)
o -1 n

where K 1is a proportional constant. By-using the result of

Equation (2.38), one obtains:




s e LT - A=

F = -M Kgq . (2.45)

Replacing the generalized forces in Equation (2.33), the modal

dynamic equation of the shell becomes:

- . 2—
+ + + i S = .
(Man usn)qn (ran rsn)qn t a9, fn ’ (2.46)
+1
where r =KS5 _and f = n+1 J W P, dn .
sn n n 2 -1 n in

It is evident that the differential Equation (2.46) is similar
to that of a damped single oscillator [12]. The coefficient of ﬁn
represents the total mass, Mt’ of the system which is the sum of the

modal mass, Mn’ of the shell and the accelerated fluid virtual mass

[12] due to the fluid loading. The coefficient of ﬁn , consisting of

b4

the radiation resistance, ran’ and the structural resistance, Ten

corresponds to the resistance factor, R_.. The coefficient of gq

f n

corresponds to the stiffness of the shell's elasticity.

Rewriting Equation (2.46), one obtains:

K T +1
-+ —
- WS wz J wnpindn
g+t +—"—aq = —F
n M n M n M
an an an 2 \—
- — _1 S
1+ S 1+_S [l+_s);n+1)11
H n 8! n H a
(2.47)

For a freely vibrating shell in an acoustic medium, let

q = Anexp(-iaht) , where the natural frequency of the submerged

shell 56 » Equation (2.47) gives an expression for wn as:

w2 2
52 _ n - mn
n M 1+ MR ’
1+ 22
Usn

4 w.!wl‘u“‘i‘l‘jﬂkw b




. -

where wn is the natural frequency in vacuo, and the factor,
MR = Man/isn’ represents the ratio of the additional fluid virtual
! mass to the unloaded shell modal mass.
It is evident from Equation (2.48) that the resonant frequency
of a submerged shell is affected by the virtual mass, Man’ and the

modal mass, Mn = uSn. In other words, it is determined by the mass

e

loading factor, MR' The virtual mass, which is a function of the

frequency, adds to the inertia of the shell. The contribution of this

e

mass to the total mass of the system depends on the acoustic character- ‘
istic impedance pc . The modal normalized acoustic resistance,

ran/pc, and reactance, Man/pa, are computed from Equation (2.40) and

L W,

plotted in Figures 2.4 and 2.5, vs the nondimensional frequency ka ,
respectively. The modal reactance increases with frequency and then

‘ decreases rapidly toward zero as the frequency increases. It means

that the virtual mass is low at high frequencies. The normalized modal
acoustic resistance increases from zero to peak value before it reaches
its asymptotic value of unity for high frequencies.

The natural frequencies of a submerged shell Bn are obtained

from Equation (2.48) by use of an iteration technique, since the natural

frequencies in vacuo, w , are already known. These are tabulated in

Tables 2.4 and 2.5 for the two shells and plotted in Figures 2.6 and
2.7, 1t is evident that the submerged shell natural frequencies of the
lower branch are lower than those for a shell in vacuo. However, the
submerged shell natural frequencies of the lower branch approach those
for a shell in vacuo at high frequencies. This is evident when one
examines Equation (2,48) since Man vanishes for high frequencies.

However, for a shell vibrating in air, the natural frequencies are the

” , A‘,A -;‘:u”.' o '
R T Y
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Figure 2.4 Normalized acoustic resistance curves, Re(Zq)/pc
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